Pydantic support

Strawberry comes with support for Pydantic . This allows for the creation of Strawberry types from pydantic models without having to write code twice.

Hereโ€™s a basic example of how this works, letโ€™s say we have a pydantic Model for a user, like this:

from datetime import datetime
from typing import List, Optional
from pydantic import BaseModel
class User(BaseModel):
id: int
name: str
signup_ts: Optional[datetime] = None
friends: List[int] = []

We can create a Strawberry type by using the strawberry.experimental.pydantic.type decorator:

import strawberry
from .models import User
@strawberry.experimental.pydantic.type(model=User)
class UserType:
id: strawberry.auto
name: strawberry.auto
friends: strawberry.auto

The strawberry.experimental.pydantic.type decorator accepts a Pydantic model and wraps a class that contains dataclass style fields with strawberry.auto as the type annotation. The fields marked with strawberry.auto will inherit their types from the Pydantic model.

If you want to include all of the fields from your Pydantic model, you can instead pass all_fields=True to the decorator.

-> Note Care should be taken to avoid accidentally exposing fields that -> werenโ€™t meant to be exposed on an API using this feature.

import strawberry
from .models import User
@strawberry.experimental.pydantic.type(model=User, all_fields=True)
class UserType:
pass

Input types

Input types are similar to types; we can create one by using the strawberry.experimental.pydantic.input decorator:

import strawberry
from .models import User
@strawberry.experimental.pydantic.input(model=User)
class UserInput:
id: strawberry.auto
name: strawberry.auto
friends: strawberry.auto

Interface types

Interface types are similar to normal types; we can create one by using the strawberry.experimental.pydantic.interface decorator:

import strawberry
from pydantic import BaseModel
from typing import List
# pydantic types
class User(BaseModel):
id: int
name: str
class NormalUser(User):
friends: List[int] = []
class AdminUser(User):
role: int
# strawberry types
@strawberry.experimental.pydantic.interface(model=User)
class UserType:
id: strawberry.auto
name: strawberry.auto
@strawberry.experimental.pydantic.type(model=NormalUser)
class NormalUserType(UserType): # note the base class
friends: strawberry.auto
@strawberry.experimental.pydantic.type(model=AdminUser)
class AdminUserType(UserType):
role: strawberry.auto

Error Types

In addition to object types and input types, Strawberry allows you to create โ€œerror typesโ€. You can use these error types to have a typed representation of Pydantic errors in GraphQL. Letโ€™s see an example:

from pydantic import BaseModel, constr
import strawberry
class User(BaseModel):
id: int
name: constr(min_length=2)
signup_ts: Optional[datetime] = None
friends: List[int] = []
@strawberry.experimental.pydantic.error_type(model=User)
class UserError:
id: strawberry.auto
name: strawberry.auto
friends: strawberry.auto
type UserError {
id: [String!]
name: [String!]
friends: [[String!]]
}

where each field will hold a list of error messages

Extending types

You can use the usual Strawberry syntax to add additional new fields to the GraphQL type that arenโ€™t defined in the pydantic model

import strawberry
from pydantic import BaseModel
from .models import User
class User(BaseModel):
id: int
name: str
@strawberry.experimental.pydantic.type(model=User)
class User:
id: strawberry.auto
name: strawberry.auto
age: int
type User {
id: Int!
name: String!
age: Int!
}

Converting types

The generated types wonโ€™t run any pydantic validation. This is to prevent confusion when extending types and also to be able to run validation exactly where it is needed.

To convert a Pydantic instance to a Strawberry instance you can use from_pydantic on the Strawberry type:

import strawberry
from typing import List, Optional
from pydantic import BaseModel
class User(BaseModel):
id: int
name: str
@strawberry.experimental.pydantic.type(model=User)
class UserType:
id: strawberry.auto
name: strawberry.auto
instance = User(id="123", name="Jake")
data = UserType.from_pydantic(instance)

If your Strawberry type includes additional fields that arenโ€™t defined in the pydantic model, you will need to use the extra parameter of from_pydantic to specify the values to assign to them.

import strawberry
from typing import List, Optional
from pydantic import BaseModel
class User(BaseModel):
id: int
name: str
@strawberry.experimental.pydantic.type(model=User)
class UserType:
id: strawberry.auto
name: strawberry.auto
age: int
instance = User(id="123", name="Jake")
data = UserType.from_pydantic(instance, extra={"age": 10})

The data dictionary structure follows the structure of your data โ€” if you have a list of User , you should send an extra that is the list of User with the missing data (in this case, age ).

You donโ€™t need to send all fields; data from the model is used first and then the extra parameter is used to fill in any additional missing data.

To convert a Strawberry instance to a pydantic instance and trigger validation, you can use to_pydantic on the Strawberry instance:

import strawberry
from typing import List, Optional
from pydantic import BaseModel
class User(BaseModel):
id: int
name: str
@strawberry.experimental.pydantic.input(model=User)
class UserInput:
id: strawberry.auto
name: strawberry.auto
input_data = UserInput(id="abc", name="Jake")
# this will run pydantic's validation
instance = input_data.to_pydantic()

Constrained types

Strawberry supports pydantic constrained types . Note that constraint is not enforced in the graphql type. Thus, we recommend always working on the pydantic type such that the validation is enforced.

from pydantic import BaseModel, conlist
import strawberry
class Example(BaseModel):
friends: conlist(str, min_items=1)
@strawberry.experimental.pydantic.input(model=Example, all_fields=True)
class ExampleGQL: ...
@strawberry.type
class Query:
@strawberry.field()
def test(self, example: ExampleGQL) -> None:
# friends may be an empty list here
print(example.friends)
# calling to_pydantic() runs the validation and raises
# an error if friends is empty
print(example.to_pydantic().friends)
schema = strawberry.Schema(query=Query)
input ExampleGQL {
friends: [String!]!
}
type Query {
test(example: ExampleGQL!): Void
}

Classes with __get_validators__

Pydantic BaseModels may define a custom type with __get_validators__ logic. You will need to add a scalar type and add the mapping to the scalar_overrides argument in the Schema class.

import strawberry
from pydantic import BaseModel
class MyCustomType:
@classmethod
def __get_validators__(cls):
yield cls.validate
@classmethod
def validate(cls, v):
return MyCustomType()
class Example(BaseModel):
custom: MyCustomType
@strawberry.experimental.pydantic.type(model=Example, all_fields=True)
class ExampleGQL: ...
MyScalarType = strawberry.scalar(
MyCustomType,
# or another function describing how to represent MyCustomType in the response
serialize=str,
parse_value=lambda v: MyCustomType(),
)
@strawberry.type
class Query:
@strawberry.field()
def test(self) -> ExampleGQL:
return Example(custom=MyCustomType())
# Tells strawberry to convert MyCustomType into MyScalarType
schema = strawberry.Schema(query=Query, scalar_overrides={MyCustomType: MyScalarType})

Custom Conversion Logic

Sometimes you might not want to translate your Pydantic model into Strawberry using the logic provided in the library. Sometimes types in Pydantic are unrepresentable in GraphQL (such as unions of scalar values) or structural changes are needed before the data is exposed in the schema. In these cases, there are two methods you can use to control the conversion logic more directly.

First, you can use a different type annotation in your Strawberry model for a field type instead of using strawberry.auto to choose an equivalent type. This allows you to do things like converting values to custom scalar types or converting between basic types. Strawberry will call the constructor of the new type annotation with the field value as input, so this only works when conversion is possible through a constructor.

import base64
import strawberry
from pydantic import BaseModel
from typing import Union, NewType
class User(BaseModel):
id: Union[int, str] # Not representable in GraphQL
hash: bytes
Base64 = strawberry.scalar(
NewType("Base64", bytes),
serialize=lambda v: base64.b64encode(v).decode("utf-8"),
parse_value=lambda v: base64.b64decode(v.encode("utf-8")),
)
@strawberry.experimental.pydantic.type(model=User)
class UserType:
id: str # Serialize int values to strings
hash: Base64 # Use a custom scalar to serialize values
@strawberry.type
class Query:
@strawberry.field
def test() -> UserType:
return UserType.from_pydantic(User(id=123, hash=b"abcd"))
schema = strawberry.Schema(query=Query)
print(schema.execute_sync("query { test { id, hash } }").data)
# {"test": {"id": "123", "hash": "YWJjZA=="}}

The other, more comprehensive, method for modifying the conversion logic is to provide custom implementations of from_pydantic and to_pydantic . This allows you full control over the conversion process and bypasses Strawberryโ€™s built in conversion rules completely, while still registering the new type as a Pydantic conversion type so it can be referenced in other models.

This is useful when you need to represent structures that are very different from GraphQL standards, without changing the underlying Pydantic model. An example would be a use case that uses a dict field to store some semi-structured content, which is difficult to represent in GraphQLโ€™s strict type system.

import enum
import dataclasses
import strawberry
from pydantic import BaseModel
from typing import Any, Dict, Optional
class ContentType(enum.Enum):
NAME = "name"
DESCRIPTION = "description"
class User(BaseModel):
id: str
content: Dict[ContentType, str]
@strawberry.experimental.pydantic.type(model=User)
class UserType:
id: strawberry.auto
# Flatten the content dict into specific fields in the query
content_name: Optional[str] = None
content_description: Optional[str] = None
@staticmethod
def from_pydantic(instance: User, extra: Dict[str, Any] = None) -> "UserType":
data = instance.dict()
content = data.pop("content")
data.update({f"content_{k.value}": v for k, v in content.items()})
return UserType(**data)
def to_pydantic(self) -> User:
data = dataclasses.asdict(self)
# Pull out the content_* fields into a dict
content = {}
for enum_member in ContentType:
key = f"content_{enum_member.value}"
if data.get(key) is not None:
content[enum_member.value] = data.pop(key)
return User(content=content, **data)
user = User(id="abc", content={ContentType.NAME: "Bob"})
print(UserType.from_pydantic(user))
# UserType(id='abc', content_name='Bob', content_description=None)
user_type = UserType(id="abc", content_name="Bob", content_description=None)
print(user_type.to_pydantic())
# id='abc' content={<ContentType.NAME: 'name'>: 'Bob'}