Schema

Every GraphQL API has a schema and that is used to define all the functionalities for an API. A schema is defined by passing 3 object types : Query , Mutation and Subscription .

Mutation and Subscription are optional, meanwhile Query has to always be there.

This is an example of a schema defined using Strawberry:

import strawberry
@strawberry.type
class Query:
@strawberry.field
def hello(self) -> str:
return "Hello World"
schema = strawberry.Schema(Query)

API reference

class Schema(Query, mutation=None, subscription=None, **kwargs): ...

query: Type

The root query Strawberry type. Usually called Query .

Note

A query type is always required when creating a Schema.

mutation: Optional[Type] = None

The root mutation type. Usually called Mutation .

subscription: Optional[Type] = None

The root subscription type. Usually called Subscription .

config: Optional[StrawberryConfig] = None

Pass a StrawberryConfig object to configure how the schema is generated. Read more .

types: List[Type] = []

List of extra types to register with the Schema that are not directly linked to from the root Query.

Defining extra types when using Interfaces
from datetime import date
import strawberry
@strawberry.interface
class Customer:
name: str
@strawberry.type
class Individual(Customer):
date_of_birth: date
@strawberry.type
class Company(Customer):
founded: date
@strawberry.type
class Query:
@strawberry.field
def get_customer(
self, id: strawberry.ID
) -> Customer: # note we're returning the interface here
if id == "mark":
return Individual(name="Mark", date_of_birth=date(1984, 5, 14))
if id == "facebook":
return Company(name="Facebook", founded=date(2004, 2, 1))
schema = strawberry.Schema(Query, types=[Individual, Company])

extensions: List[Type[SchemaExtension]] = []

List of extensions to add to your Schema.

scalar_overrides: Optional[Dict[object, ScalarWrapper]] = None

Override the implementation of the built in scalars. More information .


Methods

.execute() (async)

Executes a GraphQL operation against a schema (async)

async def execute(
query, variable_values, context_value, root_value, operation_name
): ...

query: str

The GraphQL document to be executed.

variable_values: Optional[Dict[str, Any]] = None

The variables for this operation.

context_value: Optional[Any] = None

The value of the context that will be passed down to resolvers.

root_value: Optional[Any] = None

The value for the root value that will passed to root resolvers.

operation_name: Optional[str] = None

The name of the operation you want to execute, useful when sending a document with multiple operations. If no operation_name is specified the first operation in the document will be executed.

.execute_sync()

Executes a GraphQL operation against a schema

def execute_sync(query, variable_values, context_value, root_value, operation_name): ...

query: str

The GraphQL document to be executed.

variable_values: Optional[Dict[str, Any]] = None

The variables for this operation.

context_value: Optional[Any] = None

The value of the context that will be passed down to resolvers.

root_value: Optional[Any] = None

The value for the root value that will passed to root resolvers.

operation_name: Optional[str] = None

The name of the operation you want to execute, useful when sending a document with multiple operations. If no operation_name is specified the first operation in the document will be executed.


Handling execution errors

By default Strawberry will log any errors encountered during a query execution to a strawberry.execution logger. This behaviour can be changed by overriding the process_errors function on the strawberry.Schema class.

The default functionality looks like this:

strawberry/schema/base.py
from strawberry.types import ExecutionContext
logger = logging.getLogger("strawberry.execution")
class BaseSchema:
...
def process_errors(
self,
errors: List[GraphQLError],
execution_context: Optional[ExecutionContext] = None,
) -> None:
for error in errors:
StrawberryLogger.error(error, execution_context)
strawberry/utils/logging.py
from strawberry.types import ExecutionContext
class StrawberryLogger:
logger: Final[logging.Logger] = logging.getLogger("strawberry.execution")
@classmethod
def error(
cls,
error: GraphQLError,
execution_context: Optional[ExecutionContext] = None,
# https://www.python.org/dev/peps/pep-0484/#arbitrary-argument-lists-and-default-argument-values
**logger_kwargs: Any,
) -> None:
# "stack_info" is a boolean; check for None explicitly
if logger_kwargs.get("stack_info") is None:
logger_kwargs["stack_info"] = True
logger_kwargs["stacklevel"] = 3
cls.logger.error(error, exc_info=error.original_error, **logger_kwargs)

Filtering/customising fields

You can customise the fields that are exposed on a schema by subclassing the Schema class and overriding the get_fields method, for example you can use this to create different GraphQL APIs, such as a public and an internal API. Here’s an example of this:

@strawberry.type
class User:
name: str
email: str = strawberry.field(metadata={"tags": ["internal"]})
@strawberry.type
class Query:
user: User
def public_field_filter(field: StrawberryField) -> bool:
return "internal" not in field.metadata.get("tags", [])
class PublicSchema(strawberry.Schema):
def get_fields(
self, type_definition: StrawberryObjectDefinition
) -> List[StrawberryField]:
return list(filter(public_field_filter, type_definition.fields))
schema = PublicSchema(query=Query)
Note

The get_fields method is only called once when creating the schema, this is not intended to be used to dynamically customise the schema.

Deprecating fields

Fields can be deprecated using the argument deprecation_reason .

Note

This does not prevent the field from being used, it’s only for documentation. See: GraphQL field deprecation .

import strawberry
import datetime
from typing import Optional
@strawberry.type
class User:
name: str
dob: datetime.date
age: Optional[int] = strawberry.field(deprecation_reason="Age is deprecated")
type User {
name: String!
dob: Date!
age: Int @deprecated(reason: "Age is deprecated")
}