Scalars
Scalar types represent concrete values at the leaves of a query. For example in
the following query the name field will resolve to a scalar type (in this case
it’s a String type):
{ user { name }} { "data": { "user": { "name": "Patrick" } }} There are several built-in scalars, and you can define custom scalars too. (Enums are also leaf values.) The built in scalars are:
-
String, maps to Python’sstr -
Int, a signed 32-bit integer, maps to Python’sint -
Float, a signed double-precision floating-point value, maps to Python’sfloat -
Boolean, true or false, maps to Python’sbool -
ID, a specialisedStringfor representing unique object identifiers -
Date, an ISO-8601 encoded date -
DateTime, an ISO-8601 encoded datetime -
Time, an ISO-8601 encoded time -
Decimal, a Decimal value serialized as a string -
UUID, a UUID value serialized as a string -
Void, always null, maps to Python’sNone -
JSON, a JSON value as specified in ECMA-404 standard, maps to Python’sdict -
Base16,Base32,Base64, represents hexadecimal strings encoded withBase16/Base32/Base64. As specified in RFC4648 . Maps to Python’sstr
Fields can return built-in scalars by using the Python equivalent:
import datetimeimport decimalimport uuidimport strawberry
@strawberry.typeclass Product: id: uuid.UUID name: str stock: int is_available: bool available_from: datetime.date same_day_shipping_before: datetime.time created_at: datetime.datetime price: decimal.Decimal void: None type Product { id: UUID! name: String! stock: Int! isAvailable: Boolean! availableFrom: Date! sameDayShippingBefore: Time! createdAt: DateTime! price: Decimal! void: Void} Scalar types can also be used as inputs:
import datetimeimport strawberry
@strawberry.typeclass Query: @strawberry.field def one_week_from(self, date_input: datetime.date) -> datetime.date: return date_input + datetime.timedelta(weeks=1) Custom scalars
You can create custom scalars for your schema to represent specific types in your data model. This can be helpful to let clients know what kind of data they can expect for a particular field.
To define a custom scalar you need to give it a name and functions that tell Strawberry how to serialize and deserialise the type.
For example here is a custom scalar type to represent a Base64 string:
import base64from typing import NewType
import strawberryfrom strawberry.schema.config import StrawberryConfig
Base64 = NewType("Base64", bytes)
@strawberry.typeclass Query: @strawberry.field def base64(self) -> Base64: return Base64(b"hi")
schema = strawberry.Schema( Query, config=StrawberryConfig( scalar_map={ Base64: strawberry.scalar( name="Base64", serialize=lambda v: base64.b64encode(v).decode("utf-8"), parse_value=lambda v: base64.b64decode(v.encode("utf-8")), ) } ),)
result = schema.execute_sync("{ base64 }")
assert result.data == {"base64": "aGk="}
The Base16 , Base32 and Base64 scalar types are available in
strawberry.scalars
from strawberry.scalars import Base16, Base32, Base64 Example: Custom Object Scalar
Suppose we would like to use a Pillow Image as a scalar that serializes
to/from base64-encoded bytes:
import base64from io import BytesIO
from PIL import Image
import strawberryfrom strawberry.schema.config import StrawberryConfig
@strawberry.typeclass Query: @strawberry.field def generate_image(self) -> Image.Image: # Create a simple 100x100 red image return Image.new("RGB", (100, 100), color="red")
schema = strawberry.Schema( Query, config=StrawberryConfig( scalar_map={ Image.Image: strawberry.scalar( name="Image", description="A Pillow Image, serialized as base64-encoded PNG", serialize=lambda img: base64.b64encode(img.tobytes("png")).decode( "utf-8" ), parse_value=lambda v: Image.open(BytesIO(base64.b64decode(v))), ) } ),) This generates the following schema:
"""A Pillow Image, serialized as base64-encoded PNG"""scalar Image
type Query { generateImage: Image!} query { generateImage} { "data": { "generateImage": "iVBORw0KGgoAAAANSUhEUgAAAAE..." }} Example: NewType Scalar
Suppose we would like to have a type-safe Currency scalar based on Decimal :
from decimal import Decimalfrom typing import NewType
import strawberryfrom strawberry.schema.config import StrawberryConfig
# Define a NewType for currency - this is a proper type that type checkers understandCurrency = NewType("Currency", Decimal)
@strawberry.typeclass Query: @strawberry.field def price(self) -> Currency: return Currency("19.99")
schema = strawberry.Schema( Query, config=StrawberryConfig( scalar_map={ Currency: strawberry.scalar( name="Currency", description="A monetary value with 2 decimal places", serialize=lambda v: str(v.quantize(Decimal("0.01"))), parse_value=lambda v: Currency(v).quantize(Decimal("0.01")), ) } ),) This generates the following schema:
"""A monetary value with 2 decimal places"""scalar Currency
type Query { price: Currency!} query { price} { "data": { "price": "19.99" }}
The JSON scalar type is available in strawberry.scalars :
from strawberry.scalars import JSON Overriding built-in scalars
To override the behaviour of the built-in scalars, you can pass a scalar_map
in your schema config.
Here is a full example of replacing the built-in DateTime scalar with one that
serializes all datetimes as Unix timestamps:
from datetime import datetime, timezoneimport strawberryfrom strawberry.schema.config import StrawberryConfig
@strawberry.typeclass Query: @strawberry.field def current_time(self) -> datetime: return datetime.now()
schema = strawberry.Schema( Query, config=StrawberryConfig( scalar_map={ datetime: strawberry.scalar( name="DateTime", serialize=lambda value: int(value.timestamp()), parse_value=lambda value: datetime.fromtimestamp( int(value), timezone.utc ), ), } ),)result = schema.execute_sync("{ currentTime }")assert result.data == {"currentTime": 1628683200} Replacing datetime with the popular pendulum library
To override with a pendulum instance you’d want to serialize and parse_value like the above example. Let’s throw them in a class this time.
In addition we’ll be using the Union clause to combine possible input types.
Since pendulum isn’t typed yet, we’ll have to silence mypy’s errors using
# type: ignore
import pendulumfrom datetime import datetimefrom typing import Union
import strawberryfrom strawberry.schema.config import StrawberryConfig
def serialize_datetime(dt: Union[pendulum.DateTime, datetime]) -> str: # type: ignore try: return dt.isoformat() except ValueError: return dt.to_iso8601_string() # type: ignore
def parse_datetime(value: str) -> Union[pendulum.DateTime, datetime]: # type: ignore return pendulum.parse(value) # type: ignore
schema = strawberry.Schema( Query, config=StrawberryConfig( scalar_map={ datetime: strawberry.scalar( name="DateTime", description="A date and time", serialize=serialize_datetime, parse_value=parse_datetime, ), } ),) BigInt (64-bit integers)
Python integers have arbitrary precision (no size limit). However, the GraphQL spec limits integers to 32-bit signed values (approximately ±2 billion).
This will inevitably raise errors. Instead of using strings on the client as a workaround, you could use the following approach:
from typing import NewType, Union
import strawberryfrom strawberry.schema.config import StrawberryConfig
BigInt = NewType("BigInt", int)
@strawberry.typeclass Query: @strawberry.field def large_number(self) -> BigInt: return BigInt(9007199254740993)
schema = strawberry.Schema( Query, config=StrawberryConfig( scalar_map={ BigInt: strawberry.scalar( name="BigInt", description="BigInt field", serialize=lambda v: int(v), parse_value=lambda v: str(v), ), } ),) You can adapt your schema to automatically use this scalar for all integers by
adding int to the scalar_map :
Only use this override if you expect most of your integers to be 64-bit. Since
most GraphQL schemas follow standardized design patterns and most clients
require additional effort to handle all numbers as strings, it makes more
sense to reserve BigInt for numbers that actually exceed the 32-bit limit. You
can achieve this by annotating BigInt instead of int in your resolvers
handling large python integers.
schema = strawberry.Schema( query=Query, mutation=Mutation, subscription=Subscription, config=StrawberryConfig( scalar_map={ int: strawberry.scalar( name="BigInt", serialize=lambda v: int(v), parse_value=lambda v: str(v), ), } ),)